
A Brief Introduction to the Command Line

Hautahi Kingi



Introduction

A shell is a computer program like any other. But its primary purpose is
to read commands and run other programs, rather than to perform
tasks/calculations itself.

We interact with the shell through a command-line interface or terminal.
We do so by entering commands as text input. The terminal reads the
text input, interprets the commands and sends instructions to the shell,
which then executes the appropriate operating system functions. Once
the commands are carried out, the shell communicates this with the
terminal which then prints its output.



Getting Started

Type whoami into the terminal.

$ whoami

hautahikingi

$

The command’s output is the ID of the current user. When we type
whoami, the shell finds a program called whoami, runs that program,
displays that program’s output (your username), then displays a new
prompt to tell us that it is ready for more commands.

Now let’s try the following.

$ pwd

/Users/hautahikingi

This stands for print working directory. When you first login, your
current working directory is your home directory.



Exploring a Directory
To find out what is in your home directory, type

$ ls

Desktop Dropbox Pictures Documents essay.txt Downloads Movies

ls prints the names of the files and directories in the current directory in
alphabetical order, arranged neatly into columns.

A number of commands have extra options or features which we can call
through the use of a flag.

$: ls -l

total 8

drwx ------+ 53 hautahikingi staff 1802 Jul 21 22:34 Desktop

drwxr -xr-x+ 21 hautahikingi staff 714 Jul 8 13:25 Documents

drwx ------+ 503 hautahikingi staff 17102 Aug 5 11:07 Downloads

\vdots

The -l flag on the ls command is short for long format and it displays a
more detailed listing of the files within the current working directory,
including file size and date last modified. Note that there is a space
between ls and -l: without it, the shell thinks we’re trying to run a
command called ls-l, which doesn’t exist.

Try the -F flag. What does this do?



File Hierarchy

The home directory of carol contains two sub-directories - physics and
english. The full path to the file myPoem.doc is
/Users/carol/english/myPoem.doc. Notice the two meanings for the /
character.



File and Directory Navigation

We can use cd followed by a directory name to change our working
directory. cd stands for change directory, which changes the shell’s idea
of what directory we are in. In the example above, we can type

$ cd /users/carol/physics

cd doesn’t print anything, but if we run pwd after it, we can confirm that
the current working directory is physics.

$ pwd

/users/carol/physics

If we run ls without parameters now, it lists the contents of
/users/carol/physics

$ ls

proj.txt foobar



File and Directory Navigation

We do not have to type the full path to the directory. Instead, we can
use relative path references. When cd is followed by a folder path that
does not begin with the root directory (/), it assumes that you are first
referencing the current working directory. In the above example, because
we were located in /users/carol/ we only needed to type

$ cd physics

We also do not have to type the entire name of a directory. Tab
Completion is very handy in situations where the filename is long.
Pressing tab asks the terminal to guess what you are trying to type. For
example, if we are located in /Users/carol/ and type

$ cd ph

and then press tab, the shell automatically completes the physics
directory name for us. If, however, there was another directory called
philosophy, the user would need to type cd phy before pressing tab.



Creating Directories

Let’s now make a subdirectory called my thesis in the Dropbox folder.

$ cd Dropbox

$ mkdir my_thesis

$ cd my_thesis

$ pwd

/Users/hautahikingi/Dropbox/my_thesis

Here, I navigated to the Dropbox folder, made the my thesis directory,
and then navigated into the newly created directory.



Creating files with a text editor
Let’s now create a new file called introduction.txt using a text editor.

$ nano introduction.txt

I am using Nano here because it is the default text editor on a Mac and
it is very easy to use. The equivalent on a Windows machine would be
Notepad. Let’s type in a few lines of text.

In nano, use Control-X to quit the editor and return to the shell. Make
sure you save in the process. We can check the changes we’ve made to a
particular file by using the cat command.

$ cat introduction.txt

We were wanderers from the beginning.



Command Line/GUI perform the same tasks

You obviously don’t need to create files using the command line. You can
do it all the usual way as well. Imagine I just typed up some matlab code
which I saved into the my thesis folder as code.m. Now lets look at:

$: ls

code.m introduction.txt




