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ABSTRACT
We develop an algorithm to compute exact solutions to the influence

maximization problem using concepts from reverse influence sam-

pling (RIS). We implement the algorithm using GPU resources to

evaluate the empirical accuracy of theoretically-guaranteed greedy

and RIS approximate solutions. We find that the approximations

yield solutions that are remarkably close to optimal — usually

achieving greater than 99% of the optimal influence spread. These

results are consistent across a wide range of network structures.
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1 INTRODUCTION
Influence maximization (IM) in networks is a well-studied prob-

lem with applications in viral marketing, epidemiology, and public

health among many others. The basic problem attempts to select

a set of initial seed nodes in a network to maximize the resulting

expected spread of influence initiated at those nodes.

Finding a solution to this problem suffers from a combinatorial

explosion in the number of candidate seed sets as the size of the

network or seed set increases. For example, in a relatively small

network of 1,000 nodes, there are approximately 8 trillion different

possible candidates of seed sets of size 5. The large computational

burden involved in solving this NP-hard problem prompted substan-

tial research over the last decade-and-a-half aimed at developing

approximate solutions. These approximations can broadly be clas-

sified into two groups — theoretically-guaranteed algorithms that

are proven to obtain solutions within a given factor of the optimal

solution, and heuristics that sacrifice theoretical guarantees for

speed.

This article focuses on the former. All theoretically-guaranteed

approximation algorithms in the literature [7, 16, 20, 23, 31] pro-

vide solutions that achieve an expected spread of influence within

a factor of (1 − 1/e) ≈ 0.63 of the optimal solution with a given

probability. This “gold-standard" is common across many com-

putational fields because it derives from theory about how the

maxima of sub-modular functions can be approximated via greedy

hill-climbing algorithms using the “pigeon-hole" principle. This

theoretical guarantee, however, leaves a lot of room for the actual

empirical accuracy of these algorithms. In other words, where in

the [0.63, 1]-interval does an approximate solution fall? Answering
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this question of course requires the ability to compute the optimal

solution, the impracticality of which has motivated the literature

in the first place.

However, two recent advances now render feasible the computa-

tion of optimal solutions for non-trivial networks. The first advance,

which is theoretical, is the introduction of random reverse reach-

able sets to the IM problem by [7], which dramatically improved

the computational speed of theoretically-guaranteed algorithms by

eliminating the need for repeated Monte Carlo simulations for each

candidate seed node. These have come to be known as Reverse In-

fluence Sampling (RIS) algorithms. We show that the same concept

can be leveraged to more efficiently compute exact solutions. The

second advance is the dramatic improvement in computing power

since the original greedy algorithm was developed.

This article combines these two advances to distribute our “em-

barrassingly parallel" RIS-based exact solution algorithm across

multiple threads of a GPU. We compute the exact optimal solu-

tions to the IM problem across a wide range of 100-node networks

to assess the empirical performance of theoretically-guaranteed

algorithms. We show that, perhaps surprisingly, the theoretically

guaranteed methods achieve a spread that is within 99% of the exact

optimum solution, which is consistent across a range of network

structures.

Upon completion of an initial draft of this article, we were di-

rected towards a paper by Li et al. [24], which attempts to answer

the same question. Like us, they exploit the concept of random

reverse reachable sets and also find the unexpected result that

theoretically-guaranteed heuristics perform near-optimally. How-

ever, unlike us, they solve for the exact problem using a novel linear

programming method. Instead, our GPU-driven technique retains

the basic structure of the RIS algorithms. Furthermore, whereas

[24] implement their method on a limited number of networks,

we evaluate how the accuracy of the approximations depend on

network structure.

The article proceeds as follows. Section 2 discusses the key con-

cepts required to understand the methods in this article, including a

formal statement of the IM problem, a description of the two general

approaches to computing theoretically-guaranteed approximate so-

lutions and an explanation of key network properties. Section 3

outlines the related literature and Section 4 develops our approach

to the computation of exact solutions. Section 5 presents our results.

Section 6 concludes.
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2 PRELIMINARIES
2.1 Influence Maximization Problem
Let a network be represented by a graph G = (V ,E), where V is

the set of nodes and E is the set of edges representing connections

between two nodes. Let S ⊆ V denote the “seed set," which is a

subset of nodes selected to initiate an influence propagation process.

Let σ : P(V ) 7→ R denote the spread function that returns the

expected number of nodes activated by the influence propagation

mechanism initiated from any given set of seed nodes S . The seminal

work of Kempe et al. [20] formulated Influence Maximization (IM)

as the following combinatorial optimization problem:

max

S ⊆V
σ (S) s.t. |S | ≤ k

Any algorithm solving this problem takes the graph G, an integer

k , and the spread function σ (·) as input and generates a seed set

S of size at most k , with the intention that the expected number

of nodes influenced by S is as large as possible. At the core of the

computational burden and NP-hardness of this problem is that the

domain of S has
(n
k
)
elements, where n = |V | is the number of nodes

in the graph.

As mentioned, the spread function is defined by a propagation

model that determines the diffusion of influence across a network.

Among the many potential candidates for the network diffusion

process in the literature, we focus on one of the most prominent

— the Independent Cascade (IC) model. Under the IC model, the

process unfolds in discrete time steps. When v ∈ V first becomes

active, it has a single opportunity to activate each currently inac-

tive neighbor w , which it does with probability p —a parameter

of the system. If w has multiple newly activated neighbors, their

attempts are sequenced in an arbitrary order. Whether or not v suc-

ceeds, it cannot make any further attempts to activate its neighbors

in subsequent rounds. The process ends when no new nodes are

activated.

2.2 Theoretically Guaranteed Approximations
The IM literature has focused on the development of efficient al-

gorithms and heuristics to achieve approximate solutions to the

problem. These algorithms can be broadly categorized according

to whether or not they achieve a theoretically-guaranteed perfor-

mance bound. Those with proven performance guarantees can

further be classified into methods based on Monte Carlo simula-

tions and those based on Reverse Influence Sampling (RIS). In this

article, we compare the exact solutions to the approximate solutions

obtained from a representative algorithm from each class. Further-

more, we exploit key features of the RIS methods to construct our

exact solutions. Each of these methods is described in turn below.

2.2.1 Monte Carlo Methods. Kempe et al. [20] proposed a simple

greedy hill-climbing algorithm, which selects the seed set S by

iteratively selecting successive nodes, each time choosing the node

that provides the largest marginal increase in the spread function

σ until k nodes are selected. More formally, the node added to the

seed set in time step t ∈ 1, ...,k,v∗t , is determined as follows

v∗t = argmax

v ∈V \St−1,t ≤k
σ (St−1 ∪v) − σ (St−1)

Kempe et al. [20] prove that this simple algorithm is guaranteed

to find a seed set with an expected influence spread that is at least

a constant fraction 1 − 1/e − ϵ ≈ 0.63 of the optimum solution. A

sketch of the pseudocode used to implement this Greedy algorithm

is presented in Algorithm 1.

There are two computationally burdensome components to the

Greedy algorithm. The first is the node choice component described

by the for-loop beginning at line 4 of Algorithm 1, which searches

every node in the graph as a potential candidate for the next seed

node, and ultimately determines the number of times σ (·) must

be evaluated. The second computationally intensive component is

the evaluation of σ (·) itself in line 5, which is #P-hard [9] and is

therefore usually estimated with Monte-Carlo simulations, each

of which requires approximately O(m) time to simulate the prop-

agation process across each edge in the graph, wherem = |E | is
the number of edges in the graph. 10,000 iterations are typically

performed. Assuming nsim Monte Carlo simulations for each eval-

uation of σ (·), the Greedy algorithm requires O(kmn · nsim) total

running time.

It is important to note that there are two approximations oc-

curring here. The 1/e component of the error term is attributable

to the approximation caused by the iterative construction of the

seed set rather than the consideration of the entire domain of seed

set candidates, which is represented in the two nested for-loops

beginning on lines 2 and 4 in Algorithm 1. The ϵ term, on the other

hand, results from the fact that σ (·) must be approximated via re-

peated Monte Carlo simulations, which are performed implicitly

in line 5 and run in approximately O(m · POLY(ϵ−1)) time. It is the

1/e component which is of interest, because ϵ decreases with the

number of Monte Carlo simulations performed and can therefore

be reduced to any arbitrarily small value by the researcher.
1

Algorithm 1 Pseudocode for Greedy Algorithm

Input: graph G = (V ,E), p ∈ [0, 1], integer k
Output: size-k seed set S
1: S = ∅

2: for (i in 1 : k) do
3: max = 0

4: for (v in V \ S) do
5: spread = σ (S ∪v) − σ (S)
6: if spread > max then
7: max, best = spread, v
8: end if
9: end for
10: end for

This greedy algorithm has become somewhat of a benchmark

case in the literature, given that no other algorithms achieve a

greater theoretical performance guarantee. For this reason, we

compare the approximate solution derived using this algorithm

with the exact optimal solution.

1
“Exact" solutions in this article will technically be (1 − ϵ ) approximations, although

in practice ϵ is very small.
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2.2.2 Reverse Influence Sampling (RIS) Methods. Although the

greedy procedure is conceptually very simple and orders of magni-

tude faster than computing an exact solution, it is still notoriously in-

efficient, which has prompted a large literature dedicated to finding

faster approximate solutions. The fastest theoretically-guaranteed

approximations are currently the class of RIS algorithms, which

exploit the concept of a random reverse reachable set introduced

to the IM problem by [7].

A reverse reachable (RR) set for an arbitrary nodev ∈ V is gener-

ated by first sampling a graph, д, from the distribution generated by

removing each edge e ∈ E according to its propagation probability

1 − pe and then taking the set of nodes in д that can “reach" v .2 A
random reverse reachable (RRR) set is an RR set for a node selected

uniformly at random fromV . An example of the construction of an

RR set is presented in Figure 1, which shows the sampling of the

edges from the original network to produce an instance д and the

resulting RR set of node D surrounded by the dashed lines.

Figure 1: Example of a Reverse Reachable Set

Intuitively, if a node u appears in an RR set of another node v ,
then a diffusion process from a seed set containing u has some

probability of activatingv because there is a directed path fromu to

v . This connection between RR sets and node activations is formal-

ized in a lemma, which states that the probability that a diffusion

process from any seed set S will activate any node v is equal to the

probability that S overlaps an RR set for v (at least one node in S is

contained within a RR set for v).3 This lemma implies a two-step

approximation algorithm presented as pseudocode in Algorithm 2.

[7] showed that this algorithm returns a theoretically guaranteed

(1 − 1/e − ϵ)-approximate solution with a known probability.

The first step generates a set R of θ independent RRR sets.
4
This

was referred to as the “BuildHypergraph" step by [7]. The second

step solves the maximum coverage problem of selecting k nodes

to cover the maximum number of RRR sets in R using a greedy

algorithm. In practice, the seed set is constructed by iteratively

choosing the node that appears in the most RRR sets and upon

the selection of each node, the RRR sets featuring that node are

removed. This corresponds to the “BuildSeedSet" step in [7].

2
We assume pe = p , ∀e throughout.

3
This is Lemma 1 in, for example, [18].

4
The value of θ determines both the runtime of the algorithm and ϵ . However, the
relationship between θ and ϵ is a function of the optimal solution, as shown in

Theorem 4.1. The literature has focused on determining increasingly tighter values of

θ to reduce the runtime through various techniques like limiting the total number of

edges examined during the generation process to a pre-defined threshold [7], using

Chernoff bounds [34] and adoptingmartingale methods [33], among others [18, 31].We

focus on the two computational steps common to all RIS methods and set θ = 100, 000.
Because this affects both the approximate and exact solutions equally, the proportional

difference between the solutions is approximately independent of θ so long as it

ensures ϵ << e .

Algorithm 2 Pseudocode for RIS Algorithm

Input: graph G = (V ,E), p ∈ [0, 1], integer k , integer θ
Output: size-k seed set S

STEP 1: Generate set of RRRSs
1: R = ∅

2: for (i in 1 : θ ) do
3: R.append(RRRS(G,p))
4: end for

STEP 2: Maximum Coverage Algorithm
5: S = ∅

6: for (i in 1 : k) do
7: for (v in V \ S) do
8: coverage = FR (S ∪v) − FR (S)
9: if coverage > max then
10: max, best = coverage, v
11: end if
12: end for
13: S = S ∪ best

14: end for

This approach works because for any seed set S , the fraction
of RRR sets in R covered by S , denoted by FR (S), is an unbiased

estimator of the spread σ (S). Therefore, a seed set S∗k that covers

a large number of RRR sets in R is likely to have a large expected

influence, which makes S∗k a good solution to the IM problem. Intu-

itively, if we select a nodev uniformly at random, determine the set

of nodes that would have influenced v and then repeat this process

multiple times, nodes that appear often as “influencers" are likely

good candidates for the most influential nodes. This intuition is

formalized by Lemma 2.1, which states that the error produced by

estimating R(S) with the fraction of RRR sets within R covered by

S is bounded.
5

Lemma 2.1. Suppose R represents a collection of θ RRR sets, where
θ satisfies the following bound:

θ ≥ (8 + 2ϵ) · n ·
l logn + log

(n
k
)
+ log 2

OPT · ϵ2

Then for any set S of at most k nodes, the following inequality holds
with at least 1 − n−l /

(n
k
)
probability:

|n · FR (S) − σ (S)| <
ϵ

2

OPT

where FR (S) is the fraction of RRR sets in R covered by S .

The key to the improved computational performance of the RIS

algorithms over the Greedy procedure described in Algorithm 1

is that it does not repeat the spread computation procedure to

incrementally construct a solution. Instead, all the Monte Carlo

simulations/samplings are performed up front, and then the en-

tire seed set is selected using the resulting set R. This effectively

replaces the O(nk) instances of the spread computation in line 5

of Algorithm 1 with a counting procedure in line 8 and the pre-

processing step in lines 1-4 of Algorithm 2, which eliminates the

5
Examples of various versions of this lemma in the literature are Lemma 3 in [34],

Lemma 3 in [33], and Lemma 5 in [31].
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need to simulate repeated propagation cascades. Intuitively, the

method is fast because it avoids the “wasted" spread computations

of the greedy algorithm and most of its successors because the gen-

erated RRR sets are used to inform the spread of all nodes within

the network.

2.3 Network Structure
Despite their enormous variety, networks tend to show remarkably

similar structural characteristics. This surprising uniformity has

prompted significant interest in the effect of network topologies on

various phenomena and the development of generative frameworks

to formally model these properties.

One such common property is the “small world" phenomenon

in which the average distance between nodes is usually short and

scales logarithmically with the number of nodes. This is captured

in the prototypical random graph framework developed by Erdős

and Rényi [14], in which links form between each pair of nodes

with a fixed number of nodes n with probability q. As the value
of q grows and the graph becomes less sparse, the diameter of the

graph shrinks. Like many network phenomena, the shrinkage of

the diameter changes non-linearly with q as the graph undergoes

a phase transition from many equally sized clusters to one giant

component.

Another common network property is the presence of cliques,

so that two nodes that are both neighbors of the same third node

are more likely to also be neighbors of one another. This effect is

quantified by the clustering coefficient [30, 35] and can be studied

using a framework developed by Watts and Strogatz [35], which

begins with a regular ring lattice with n nodes andm edges and

attempts to randomly “rewire" each edge of the graph sequentially

with probability β . If an edge is selected for rewiring, a new desti-

nation node is selected at random if an edge connecting the target

and the source does not already exist.

The Watts-Strogatz model is convenient for analyzing changes

in clustering within a network. The model accounts for clustering

while retaining the short average path lengths of the Erdos-Renyi

model. The underlying lattice structure of the model produces a

locally clustered network, while the randomly rewired links dra-

matically reduce the average path lengths. Varying the value of β
allows us to interpolate between a network structure that is very

close to an Erdos-Renyi networkG(n,q) with q = K/n − 1 at β = 1,

whereK is the degree of each node in the regular lattice, to a regular

ring lattice at β = 0 with high clustering but large diameter.
6
Again,

however, these changes do not occur uniformly. As β increases

from zero, the diameter drops precipitously from its initial value

and quickly approaches values typical of random graphs. On the

other hand, the clustering coefficient also decreases with β , but
much more slowly.

The models above produce approximately Gaussian degree dis-

tributions. However, many networks exhibit a right-skewed or

“scale-free" degree distribution in which a significant number of

nodes have a very large degree [4]. This results in the power-law

6
The β = 1 version is not identical to the Erdos-Renyi model because it enforces each

node to have at least K/2 connections whereas there is no restriction on edges for a

given node in Erdos-Renyi.

distribution P(d) = Cd−γ for the probability that a node has d con-

nections to other nodes, where γ generally ranges between 2 and

3.

Section 5 explores whether the approximation accuracy of the

Greedy and RIS algorithms differs across various network properties

using the generative models described above.

3 RELATED LITERATURE
The problem of finding the most influential set of nodes to target

for a diffusive process was first posed by Domingos and Richardson

[12, 13] and formalized into the combinatorial problem by [20].

Many faster algorithms followed, most of which were heuristics

with solutions that were not guaranteed to achieve any performance

bound [9, 10, 19, 21, 29]. This article investigates the empirical accu-

racy of the relatively few theoretically-guaranteed approximations

algorithms [7, 16, 23].

Our research question and approach are most closely related to

recent work by [24]. Like us, they exploit the concept of random

reverse reachable sets and also find the unexpected result that the

theoretically-guaranteed heuristics perform near-optimally on the

networks they evaluate. However, unlike us, they solve for the exact

problem using a novel linear programming method, which can scale

to extremely large graphs with billions of nodes whereas our GPU-

driven technique is limited to relatively small sized networks in

the hundreds of nodes. However, we also systematically investigate

whether the accuracy of the approximations differ across different

network structures. This practice of investigating how a network

phenomenon varies with respect to network structure has a long

history in network science, including epidemic and disease spread-

ing [8, 28, 32], a network’s vulnerability to attack [2, 6, 11, 27], the

ability to predict the spread of a contagion [8], and non-equilibrium

phase transitions [26].

This article is also related to a small literature broadly concerned

with the practical implementation of IM algorithms and in particu-

lar the choice faced by a practitioner in choosing an appropriate

algorithm ex-ante. For example, Akbarpour et al. [1] ask what con-

ditions or network structures require extensive IM algorithms, and

show that randomly choosing k+1 nodes can often outperform opti-

mally chosen k nodes. It would be useful to know when such simple

heuristics, rather than complex IM approaches, suffice to compute

influential nodes. Our results suggest that network structure likely

plays a minimal role in guiding this decision.

This article also helps to confirm the legitimacy of the general

approach in the IM literature of comparing spreads achieved by

a given method to an established algorithm with proven perfor-

mance bounds. These comparisons are more meaningful when the

quality of a given algorithm is known, which depends on the actual

performance rather than a lower bound.

Finally, a key feature of our method is the use of GPU resources.

Although a large literature investigates how to parallelize funda-

mental network algorithms [3, 5, 17, 22], there are relatively few

papers that explicitly describe the implementation of parallelization

techniques in the context of IM [15, 21, 25]. In these cases, high

performance computing resources tend to be used to expand the
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applicability of existing algorithms to larger graphs or to demon-

strate the distributed nature of a novel algorithm. There has been

little focus on the use of parallelization to compute exact solutions.

4 EXACT SOLUTION METHOD
To compare the empirical accuracy of the approximation procedures

described in Section 2.2, we must first compute an exact solution

to the NP-hard IM problem. This is not trivial, as evidenced by the

significant effort attributed to the development of approximation

algorithms. We therefore rely on two key insights to make this

exercise tractable. The first is the RIS-Exact algorithm. The second

is its embarrassingly parallel structure, which allows us to distrib-

ute independent iterations across multiple threads within a GPU

architecture. Both insights are described in more detail below.

4.1 RIS-Exact Algorithm
Algorithm 3 presents the RIS-Exact algorithm. It retains the same

2-step structure of the RIS approximation algorithm described in

Section 2.2, and indeed the first step is identical. The second step,

however, is modified to comprehensively loop over all candidate

seed sets rather than to construct the seed set iteratively. This

replaces the nested for-loops beginning on lines 6-7 in Algorithm 2,

which runs in O(nk) time, with one larger loop beginning on line 7

in Algorithm 3 that computes the coverage of all possible seed sets

and runs in O
(n
k
)
time. This simple adaptation achieves an exact

solution to the IM problem, as described in Theorem 4.1.

Theorem 4.1. Suppose θ satisfies the following bound:

θ ≥ (8 + 2ϵ) · n ·
l logn + log

(n
k
)
+ log 2

OPT · ϵ2

Algorithm 3 returns a (1 − ϵ)-approximate solution to the IM prob-
lem with at least 1 − n−l probability.

Proof. Lemma 2.1 states that

|n · FR (S) − σ (S)| <
ϵ

2

OPT

holds with at least 1 − n−l /
(n
k
)
probability for any given size-k set

S . It follows from Boole’s inequality that the above holds simulta-

neously for all size-k sets with at least 1 − n−l probability.

Now let SR+k be the seed set obtained from Algorithm 3. Lemma

2.1 implies that

σ (SR+k ) ≥ nF (SR+k ) −
ϵ

2

OPT

Now let S0k be the exact solution to the IM problem. Although

this set maximizes σ (·), we know from the definition of SR+k that

F (SR+k ) ≥ F (S0k ), so it follows that

σ (SR+k ) ≥ nF (S0k ) −
ϵ

2

OPT

Applying Lemma 2.1 once again implies that

σ (SR+k ) ≥ σ (S0k ) −
ϵ

2

OPT −
ϵ

2

OPT

= (1 − ϵ) ·OPT

as required. □

Algorithm 3 Pseudocode for RIS-Exact Algorithm

Input: graph G = (V ,E), p ∈ [0, 1], integer k , integer θ
Output: size-k seed set S

STEP 1: Generate set of RRRSs
1: R = ∅

2: for (i in 1 : θ ) do
3: R.append(RRRS(G,p))
4: end for

STEP 2: Exhaustive Search
5: candidates, max = set of all

(n
k
)
node combinations, 0

6: for (set in candidates) do
7: coverage = FR (set)

8: if coverage > max then
9: max, S = coverage, set

10: end if
11: end for

4.2 GPU Implementation
RIS-Exact retains the “combinatorial explosion" property required

to compute an exact solution, but replaces the Monte Carlo simu-

lations in each round with a procedure that counts the frequency

of occurrence of events, which is a relatively cheap calculation.

This is the same reason why RIS approximation methods outper-

form their Monte Carlo-based counterparts in terms of efficiency.

However, Step 2 of Algorithm 3 still requires significant compu-

tational resources. Fortunately, it is “embarrassingly parallel" and

can be be distributed across multiple computing nodes to speed up

computation.

We experimented with various high performance computing con-

figurations on Amazon Web Services, including a 72-core shared-

memory architecture and a distributed setting with 19 c5.2xlarge

instances for a total of 152 virtual CPUs. We settled upon a config-

uration with an Nvidia Tesla K80 GPU implemented on a p2.xlarge

instance of an EC2 “Deep Learning Base AMI (Amazon Linux) Ver-

sion 19.1 (ami-00a1164673faf2ac3)" instance. To understand the

magnitude of the speed-up, running RIS-Exact on a 50-node net-

work with a seed set size of k = 4 on a standard desktop with a 2.7

GHz Intel Core i5 processor and 8GB of RAM took 66 minutes. The

same run on a 72-core shared-memory setup took 3 minutes while

our GPU-based framework reduced the run time to 6 seconds.

The procedures were implemented in Python using the Numba

library to access and execute tasks on the Nvidia CUDA cores.

Efficient CUDA-aware computations require compact vector-like

object representations. For Step 1, we encoded R as a θ × n binary

array, where each row represents an RRR set and the presence of

a node in that set is indicated by the corresponding entry set to

TRUE. Each row of the array is distributed to independent GPU

threads. Similarly in Step 2, the array object is size 1 ×
(n
k
)
with

each entry representing the number of RRR sets in R covered by

the corresponding seed set.
7

7
The code to generate the results is available at https://github.com/hautahi/IM-

Evaluation.

https://github.com/hautahi/IM-Evaluation
https://github.com/hautahi/IM-Evaluation
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5 NUMERICAL ANALYSIS
We compare approximate solutions to optimal solutions by con-

structing an approximation factor δ = R(SAPP )/R(SOPT ) ∈ [0, 1],

where SAPP is the seed set obtained via Greedy or RIS and SOPT is

the seed set obtained via RIS-Exact. A larger δ , which represents

the fraction of an optimal solution achieved by the approximation,

indicates a more accurate estimation.

We focus our experiments on the three classes of networks dis-

cussed in Section 2.3 - the Erdős and Rényi [14] network, the Watts

and Strogatz [35] network, and a network with node degrees d
sampled from a scale-free distribution P(d) = Cd−γ with C set to

achieve a similar network density to the other graph instances.

These frameworks allow us to isolate a particular component of

network structure and systematically study how δ varies with the

structural parameters of themodels. For example, varying the Erdos-

Renyi probability of link formation between a pair of nodes,q allows
us to study the effect of edge density and network diameter on δ .
Similarly, varying the re-wiring parameter β in Watts-Strogatz net-

works allows us to investigate the effect of clustering on δ . It has
also been shown that the scale-free parameter γ crucially deter-

mines a number of network phenomena, so it is also of interest to

directly examine how it affects δ .
We considered 29 different parameter configurations across the

three frameworks (q ∈ [0.1, 0.9], β ∈ [0, 0.9], and γ ∈ [1.5, 4]). For

each configuration, we generated 10 graph instances and ran each

algorithm for a range of propagation probabilities p between 0.01

to 0.7. We also experimented with a range of network sizes (50-500)

and seed set sizes (2-7) that kept the number of candidate seed sets

for RIS-Exact under 100 million and computation time under 30

minutes per algorithm. We found little variation in δ with n or k so

we settled on presenting results for networks of size n = 100 with a

seed set size of k = 4, each of which required run times of approxi-

mately 180 seconds per solution. In total, we simulated solutions

for 1,880 different combinations of network configurations, prop-

agation probabilities and graph instances, which required a total

computation time of about 4 days. We set θ equal to 1 million and

used 10,000 Monte Carlo simulations to estimate σ in the Greedy

algorithm.

There are two main numerical results. The first is that the greedy

and RIS approximation procedures achieve almost identical results

to the exact optimal solution, which is consistent with the findings

of [24]. Fundamentally, both approximations in practice achieve

close to the upper-bound of their theoretically-guaranteed solution

range of [0.63, 1]. Figure 2 plots the mean and 95% confidence bands

of the approximation factor δ for both approximation algorithms

across all three network types, where the mean is taken over all

network configuration parameters, propagation probabilities and

graph instances. It demonstrates that the approximation algorithms

yield solutions that almost always achieve a spread well above 99%

of the optimal solution, regardless of network structure.

Figure 2 also appears to show that the RIS algorithm is superior

to the greedy algorithm. Although this is possible, because theory

does not guarantee the methods yield identical results, we caution

against this interpretation for three reasons. First, the RIS and RIS-

Exact solutions are directly comparable because they both act on

the same set R. There is therefore no random simulation error in

δ for RIS, unlike greedy. Second, we cannot ensure that the error

term ϵ described in Section 2.2 is identical between the RIS and

greedy solutions, so the observed difference in δ may simply reflect

a larger ϵ value for the greedy procedure. Third, the scale of the

axes suggest that the difference is more salient than what it is.

Figure 2: IMApproximationAlgorithms areAlmostOptimal

The second main numerical result is that there is very little rela-

tionship between network structure (at least those related to clus-

tering, diameter, density, and degree distribution) and the accuracy

of the approximation algorithms. The only relatively significant re-

lationship we uncovered is presented in Figure 3, which shows the

relationship between the mean δ for each approximation method

(averaged across propagation probabilities and graph instances with

95% confidence bands) and the Erdos-Renyi link-forming parame-

ter q. As network density increases through an increase in q, the
approximate solutions tend to improve.

One potential explanation for this is that the probability of a

node having degree d in an Erdos-Renyi network is equal to qd . As
q increases, higher degree nodes are more likely. In the absence

of clustering, influential nodes tend to therefore be spread evenly

across the network, which avoids the interdependence among the

influence of nodes that tends to make the iterative construction of

the seed set diverge. There is no such relationship between δ and,

say, the rewiring parameter of the Watts-Strogatz network because

the constant node-to-edge ratio of Watts-Strogatz instances ensures

that changes in β do not affect the expected degree of its nodes.

6 CONCLUDING REMARKS
We explored how a seminal and a state-of-the-art theoretically-

guaranteed influence maximization (IM) approximation algorithm

perform in comparison to an optimal solution, and whether this

performance differed with respect to network structure. To do so,

we proposed RIS-Exact - a fast algorithm that exploits reverse in-

fluence sampling and GPU computing resources to calculate the

exact solution to the IM problem. We applied RIS-Exact to a collec-

tion of network instances drawn from alternative configurations of

Erdos-Renyi, Watts-Strogatz and scale-free graph frameworks.

We found that both approximations perform remarkably well

and generally achieve at least 99% of the optimal solution. We
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Figure 3: Accuracy Increases with Network Density

found little relationship between network properties and accuracy

other than an apparent positive correlation between accuracy and

network density.

Our results suggest a possibility that there is something inherent

to how influence propagates across a network that renders standard

sub-modular function results to be too conservative. We leave this

theoretical investigation to future work.
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